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High Mountain Asia (HMA): Introduction

● The Tibetan Plateau (TP): world’s highest plateau 
(average elevation 4000m) ➝ influence on 
regional and global climate (e.g., Kutzbach et al., 
1993)

Li et al. (2018), Fig. 1 

Smith and Bookhagen 
(2018), Fig. 1A 
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“Cold bias” over Tibetan Plateau

● Cold biases in models from first AMIP experiments 
over HMA and TP (Mao and Robock, 1998)

● Possible explanations: excess precipitation (Lee & 
Suh, 2000), snow–ice albedo issues (Su et al., 2013), 
cold biases in T500 due to smoothed topography 
(Boos and Hurley, 2013), snow cover 
parameterization and boundary layer (Chen et al., 
2017), lack of high-elevation observation stations in 
the CRU (Gu et al., 2012), etc.
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Our study

1. Biases in CMIP6 for near-surface air temperature, 
total precipitation and snow cover extent?

2. What are the links between the model biases?

3. Do the model biases impact the trends?

4. Projections over the next century? 
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Data and methods

● 26 CMIP6 GCMs simulations for historical period 1979-2014

● 10 CMIP6 models for the future projections: SSP1-2.6, SSP2-4.5, 
SSP3-7.0 and SSP5-8.5 (O’Neill et al., 2016)
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● large snc spread -> 
difficulty to simulate snc 
in complex topography 
areas

● ERA5 bias similar to 
models -> no assimilation 
>1500m (Orsolini et al., 
2019)

● pr obs lower than models 
-> snow undercatch 
issues by rain gauge (e.g. 
Jimeno-Saez et al., 2020)
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● Correlations between tas/snc biases with elevation -> difficulty representing physical processes at 
high elevation?

Bias spatial correlation

● Significant negative correlations between tas and snc biases

Are trends impacted by overall biases? 

● Less obvious for pr (/!\ APHRODITE underestimate solid precip /!\ -> more negative correlation)
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● No obvious link between 
model biases and trends

● Some strongly biased 
models have trends close 
to observations 

● On the contrary, some 
models with little bias 
have very different trends

● Except for snow cover in 
summer -> very small 
snow cover

-> All available models are 
kept for projections 

(orange points)

Historical trends analysis
● Available models for projections
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○ snc overestimated 12 [-13 to 43] % (or 52 [-53 to 183] % relative)
○ pr overestimated 1.5 [0.3 to 2.9] mm d-1 (or 143 [31 to 281] % relative) /!\ obs /!\

● No obvious link between biases and trends -> biased models seems able to reproduce past trends

● Models resolution doesn’t systematically improve performances! Additional improvements in 
parameterizations are essential!

● Other variables might be involved... (cloud cover, aerosols, boundary layer, T500,...)

● Annual projections (2081-2100 with respect to 1995-2014 average with 10 GCMs): 
○ median warming from 1.9 °C to 6.5 °C 
○ relative median snc decrease from -9.4 % to -32.2 %
○ relative median pr increase from 8.5 % to 24.9 %

Take-home messages
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Reducing the High Mountain Asia cold bias in GCMs by adapting 
snow cover parameterization to complex topography areas

Part #2

Mickaël Lalande1, Martin Ménégoz1, Gerhard Krinner1, Catherine Ottlé2, and Frédérique Cheruy3

1 Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
2 LSCE-IPSL (CNRS-CEA-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France

3 Laboratoire de Météorologie Dynamique (LMD)/IPSL/Sorbonne Université/CNRS, UMR 8539, Paris, France

The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2023-113, in review, 2023
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Snow cover over mountainous areas in global climate models

~ 250 km

~ 
15

0 
km

~ 50 km

IPSL-CM6A

How do we compute the 

snow cover fraction (SCF) 

in global climate models?

&

How does the SCF evolves 

over mountainous areas?  
13



Snow scheme

snow scheme in the ORCHIDEE land surface model 
(Wang et al., 2013)

Snow Depth
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Snow cover parameterizations

Niu and Yang (2007) 
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Snow Cover parameterization: Niu and Yang (2007) - NY07
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Snow cover micro to macro
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Snow cover in mountainous area: Swenson & Lawrence (2012) - SL12 

Relative snow depth
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Snow cover in mountainous area: Swenson & Lawrence (2012) - SL12 

Swenson & Lawrence (2012) 

Standard deviation of topography 
(σtopo) in SCF parameterization first 
introduced by Douville et al. (1995), 

then Roesch et al. (2001), etc.

17
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Snow cover in mountainous area: Swenson & Lawrence (2012) - SL12 

Swenson & Lawrence (2012) 
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Snow cover in mountainous area: Swenson & Lawrence (2012) 

Swenson & Lawrence (2012) 

Elevation

Standard deviation of elevation
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“Estimating the spatial distribution of snow water equivalent (SWE) 
in mountainous terrain is currently 

the most important unsolved problem in snow hydrology.”

Dozier et al. (2016) 

18

https://onlinelibrary.wiley.com/doi/10.1002/wat2.1140


High Mountain Asia UCLA Daily Snow Reanalysis (HMASR)

Margulis et al. (2019) 
19

https://nsidc.org/data/HMA_SR_D/versions/1
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HMASR -> snow cover parameterizations

HMASR
SD / SWE / density 

+ STD topo 
at 1°x1°

SCF

R01 (Roesch et al., 2001) NY07 (Niu and Yang, 2007)

SL12 (Swenson and Lawrence, 2012) DNN (deep neural network)

+ σtopo (LA23)

20

http://link.springer.com/10.1007/s003820100153
http://doi.wiley.com/10.1029/2007JD008674
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Histograms of the daily HMASR seasonal SCF and SD
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Histograms of the daily HMASR seasonal SCF and SD#3
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HMASR -> snow cover parameterizations
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HMASR -> snow cover parameterizations#3
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Application in GCM (LMDZ/ORCHIDEE)

● Nudged land-atmosphere coupled 

simulations (LMDZ/ORCHIDEE)

● 2 resolutions: 

○ LR 144x142 (~100/200 km)

○ HR 512x360 (~50 km)

● 2005-2008 (2004 spin-up)

● NY07, LA23, and SL12 parameterizations

● Snow CCI MODIS observational 

reference
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Application in GCM: HR simulation biases (reference NY07)
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Application in GCM: HR simulation biases (new LA23)
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Fig. 5 Wang et al. (2020)

https://doi.org/10.1007/s00382-019-05080-w


Application in GCM: HR simulation biases (new SL12)
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Application in GCM: LR/HR comparison
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Application in GCM: LR/HR comparison

● Contrasting results depending on the location

● Snow cover overestimation in mountain areas 
is reduced by about 5 to 10 % (when including 
a dependency on the subgrid topography in 
the SCF parameterizations)

● No deterioration over flat areas (in average) 
and no increase of the spatial RMSE

● Early melting in the US mountainous region

● Increasing the resolution improves the 
simulated SCF in certain areas (e.g., Alps)

● Persistent snow cover overestimation in HMA 
mountainous region (tropo bias)
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Application in GCM: feedbacks (LA23 - NY07)

Taking into account the variation of topography in 
LA23 (compared to NY07) reduces the SCF over 
mountainous regions and induces:

● Decrease of the surface albedo which increase 
the LWup, sensible, and latent heat fluxes 
(towards the atmosphere)

● Increase of LWdown concomitant to an increase 
in cloud cover and snowfall in high elevations 
(negative feedback)

● Decrease of SWE of more than 50 cm locally 

● Increase in near-surface temperature and 

● Surface cold bias decrease from −1.8 °C to 
about −1 °C in the High Mountain Asia (HMA) 
region
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Take home messages

● Taking into account the sub-grid topography in SCF parameterization seems essential 
over mountainous areas (Swenson and Lawrence, 2012 ; Miao et al., 2022 ; Lalande et 
al., in review)
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Take home messages

● Taking into account the sub-grid topography in SCF parameterization seems essential 
over mountainous areas (Swenson and Lawrence, 2012 ; Miao et al., 2022 ; Lalande et 
al., in review)

● Other processes might be involved in current biases over HMA:
○ precipitation (orographic drag; e.g, Wang et al., 2020) / aerosol deposition on snow (e.g., Usha et 

al., 2020) / boundary layer (e.g., Serafin et al., 2020) / tropospheric cold bias, etc.

● Further calibration -> other regions / datasets ( + other variables, forested areas?, etc.) +  
⤷Crucial need of snowfall, SD/SWE observations over mountainous areas!

● Limitation over permanent snow areas? (glaciers, etc.)
○ elevation bands (e.g., Walland and Simmonds, 1996; Younas et al., 2017)
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Take home messages

● Taking into account the sub-grid topography in SCF parameterization seems essential 
over mountainous areas (Swenson and Lawrence, 2012 ; Miao et al., 2022 ; Lalande et 
al., in review)

● Other processes might be involved in current biases over HMA:
○ precipitation (orographic drag; e.g, Wang et al., 2020) / aerosol deposition on snow (e.g., Usha et 

al., 2020) / boundary layer (e.g., Serafin et al., 2020) / tropospheric cold bias, etc.

● Further calibration -> other regions / datasets ( + other variables, forested areas?, etc.) +  
⤷Crucial need of snowfall, SD/SWE observations over mountainous areas!

● Limitation over permanent snow areas? (glaciers, etc.)
○ elevation bands (e.g., Walland and Simmonds, 1996; Younas et al., 2017)

● Other parameterizations not tested, e.g.: Liston (2004), Helbig et al. (2021), etc.
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● Deep learning very promising for such parameterizations (+ help to test the influence of 
other parameters)
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Air Temperature meridional cross-section means bias



Lien avec la topographie ?
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High Mountain Asia UCLA Daily Snow Reanalysis (HMASR)

https://nsidc.org/data/HMA_SR_D/versions/1


High Mountain Asia UCLA Daily Snow Reanalysis



         Other snow cover parameterizations

Roesch et al. (2001)Swenson and Lawrence (2012)Niu and Yang (2007) custom

STD
topo

Accumulation

Depletion

Mountainous areas

Depends only on SWE so no 
hysteresis

https://link.springer.com/article/10.1007/s003820100153
https://github.com/mickaellalande/PhD/blob/master/local/SCE_SWE_parametization/Niu2007-std.ipynb
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JD008674


Feedbacks (LA23 - NY07)



Feedbacks (LA23 - NY07)/NY07



Time series



Time series



Fig. 7 Cheruy et al. (2020)

Context: snow bias in IPSL model CMIP5 versus CMIP6

Bias of the snow cover fraction 
(i.e., simulated - observed snow fraction)

Old version (CMIP5) New version (CMIP6)

N
ot
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To
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ow

https://onlinelibrary.wiley.com/doi/10.1029/2019MS002005


● Version 6A-LR (CMIP6): 

○ 144 x 142 (grid points 
lon / lat)

○ ~ 2,5° x 1,25°

○ 79 vertical layers
(up to ~80 km altitude)

○ time step of the physics: 
15 min

● Version 6A-HR (CMIP6): 

○ 360 x 180 (grid points 
lon / lat)

○ ~ 0,5° x 0,5°

○ time step of the physics: 
3,75 min

IPSL Earth System Model



● Large cold bias (up to -20 °C) and excess of snow cover (> 50 %) mainly located on the Tibetan Plateau
● Historical / AMIP similar and reduced biases in HighResMIP

● land-hist slightly underestimate the snow cover (/!\ poor quality of atmospheric forcing? /!\)

IPSL-CM6A-LR: Historical, AMIP, land-hist / IPSL-CM6A-ATM-HR bias 

Snow cover bias Temperature bias

https://github.com/mickaellalande/PhD/blob/master/CICLAD/Himalaya/CMIP6_IPSL_bias/Snow%20cover.ipynb
https://github.com/mickaellalande/PhD/blob/master/CICLAD/Himalaya/CMIP6_IPSL_bias/Temperature.ipynb


Air Temperature zonal means bias global versus HMA

● Cold bias in troposphere and hot bias in 
stratosphere

● Cold bias of air temperature not restricted to 
HMA!

● HMA seems to amplify this bias

● The bias is reduced in HighResMIP 

Questions
1. Does the surface biases trigger tropospheric 

biases?
2. Are the tropospheric biases responsible of 

surface biases?

Experiments
1. Experience without snow
2. Nudged experiments (temperature and wind)



Tropospheric bias reduction: nudged experiments

6h u, v 

5j u, v 

3h u, v, T 

3h u, v, T
NoBL 

1j u, v, T
NoBL 

6h u, v, 
10j T
NoBL 



● Improved representation of snow albedo including 
aerosol deposition (e.g., Warren and Wiscombe, 
1980; Kokhanovsky and Zege, 2004; Wang et al., 
2020b)

● Small-scale orographic drag

● Improved calculation of surface energy balance 

● Elevation bands and snow-ice coupling

● Boundary layer in mountain areas (Wekker and 
Kossmann, 2015; Serafin et al., 2020)

Perspectives: CMIP6 -> CMIP7 LMDZ/ORCHIDEE

Fig. 3 Vernay et al. (2022)

Fig. 7 Usha et al. (2020)

Fig. 5 Wang et al. (2020)
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http://journals.ametsoc.org/doi/10.1175/1520-0469(1980)037%3C2734:AMFTSA%3E2.0.CO;2
https://opg.optica.org/abstract.cfm?URI=ao-43-7-1589
https://journals.ametsoc.org/view/journals/hydr/21/4/jhm-d-19-0193.1.xml
https://doi.org/10.3389/feart.2015.00077
https://doi.org/10.15203/99106-003-1
https://essd.copernicus.org/articles/14/1707/2022/
https://doi.org/10.1007/s00382-020-05222-5
https://doi.org/10.1007/s00382-019-05080-w
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Snow model in CLASSIC: description  
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Melton et al. (2020), 
Fig. 1 

https://gmd.copernicus.org/articles/13/2825/2020/
https://gmd.copernicus.org/articles/13/2825/2020/gmd-13-2825-2020-f01.png
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Melton et al. (2020), 
Fig. 1 

https://gmd.copernicus.org/articles/13/2825/2020/
https://gmd.copernicus.org/articles/13/2825/2020/gmd-13-2825-2020-f01.png


CLASS description and snow model characteristics 
(Verseghy et al., 2017 - version 2.7 -> 3.6.1):

● Separate energy and water balances for the 
vegetation canopy, snow, and soil

● Single-layer snow model

● Snow albedo decreases and the snow density 
increases exponentially with time

● Fresh snow density is determined as a function of 
the air temperature

● The snow thermal conductivity is derived from the 
snow density

● Melting of the snow layer can occur either from 
above or from below (percolation and refreezing 
taken into account)

Snow model in CLASSIC: description   

33

http://journals.ametsoc.org/doi/10.1175/JHM-D-16-0153.1


● Interception of snowfall by vegetation is explicitly 
modeled

● SCF = 100 % if SD > 10 cm then linear decrease?

Updates version 2.7 -> 3.6.1:

● Revised formulation for vegetation interception of snow

● New parameterization for unloading of snow from 
vegetation

● Adjustments to the albedo of snow-covered canopies

● Revision of the limiting snow density as a function of depth

● New algorithms for snow thermal conductivity

● Water retention in snow packs has also been incorporated

● Snow albedo refreshment threshold has been updated

Note: A parameterization of the effect of black carbon on the snow 
albedo has recently been developed for CLASS (when coupled)

Snow model in CLASSIC: description   
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Snow model in CLASSIC: evaluation 

34

Evaluation of CLASS Snow Simulation over Eastern 
Canada (Verseghy et al., 2017):

● SCF agreed well with the observational estimates.

● Albedo of snow-covered areas showed a bias of up 
to -0.15 in boreal forest regions (-> neglect of 
subgrid-scale lakes). 

● In June, positive albedo bias in the remaining 
snow-covered areas (neglect of impurities in the 
snow?).

http://journals.ametsoc.org/doi/10.1175/JHM-D-16-0153.1


Snow model in CLASSIC: evaluation 
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Seiler et al. (2021), 
Fig. 7 Evaluation of CLASS Snow Simulation over Eastern 

Canada (Verseghy et al., 2017):

● SCF agreed well with the observational estimates.

● Albedo of snow-covered areas showed a bias of up 
to -0.15 in boreal forest regions (-> neglect of 
subgrid-scale lakes). 

● In June, positive albedo bias in the remaining 
snow-covered areas (neglect of impurities in the 
snow?).

CLASSIC v1.0: Global benchmarking (Seiler et al., 2021):

● Albedo biases -> possible relation with snow and/or 
the large solar zenith angle?

https://gmd.copernicus.org/articles/14/2371/2021/
https://gmd.copernicus.org/articles/14/2371/2021/#&gid=1&pid=1
http://journals.ametsoc.org/doi/10.1175/JHM-D-16-0153.1
https://gmd.copernicus.org/articles/14/2371/2021/
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Keep up with what already 
exists and continue my thesis 

work

● SL12, LA23,...

● New calibrations / 
validations? 

● Tuning in the model

● Using the Snow CCI 
datasets 

● Vegetation?

SCF
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Multi-layer

https://www.cambridge.org/core/product/identifier/S0260305500255961/type/journal_article
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slab)
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● Some single-layer models 
perform as well as 
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(SnowMIP - Etchevers et 
al., 2004)

Multi-layer

Gordon et al. (2006) 

● Sublimation of blowing 
snow developed and 
implemented in CLASS

● Blowing snow sublimation 
generally improves the 
results 

6% of all grid points (2.5° × 2.5°) and 
days throughout the year (Déry and 
Yau, 1999a) / 25% in north-eastern 
Canada (Hanesiak and Wang, 2005)

Blowing snow subli loss

https://www.cambridge.org/core/product/identifier/S0260305500255961/type/journal_article
https://doi.org/10.3137/ao.440303

