

Centre de recherche sur les interactions bassins versants - écosystèmes aquatiques (RIVE)

Centre for Research on Watershed-Aquatic Ecosystem Interactions (RIVE)

aboratoire de recherche en environnement des régions froides Chaire de recherche du Canada en hydrologie de la cryosphère

CLASSIC meeting 2024

Snow cover heterogeneity and its impact on the Climate and Carbon cycle of Arctic regions

Mickaël Lalande

Postdoc at UQTR / RIVE / GLACIOLAB

ESA CCI Fellowship — 01/10/2023 to 30/09/2025 (2 years)

supervised by Christophe Kinnard and Alexandre Roy

Context: Arctic Amplification

- The Arctic has warmed 2 to 3 times faster than the global average (e.g., Cohen et al., <u>2014</u>); nearly four times faster than the globe since 1979 (Rantanen et al., <u>2022</u>)
- ➡ melting of Arctic sea ice and spring snow cover
- Impacts on ecosystems and human activities such as transportation, resource extraction, water supply, use of land and infrastructure among others.
- 1.035 Pg-C (>66° N, 3m soil) By 2100, 55 to 232 Pg C-CO2-e could be emitted via permafrost degradation (Schuur et al., 2022)

Snow: essential component of the climate system

Snow model in CLASSIC: description

Arctic snowpack

Domine et al., (<u>2019</u>)

Figure 3. Comparison of measured snow density profiles at Bylot Island in May 2015 with those simulated using the detailed snow models Crocus and SNOWPACK. Crocus runs of 6 May are shown because Crocus simulates melting on 7 May, and this extra process makes comparisons irrelevant on 12 May.

Domine et al., (<u>2018</u>)

PHYSICAL SOLUTION

Implement the water vapor fluxes explicitly in the snowpack (→ snow mass redistribution):

- <u>IVORI</u> project (Marie Dumont, ERC ~2M €)
- Jafari et al., (<u>2020</u>): The Impact of Diffusive Water Vapor Transport on Snow Profiles in Deep and Shallow Snow Covers and on Sea Ice
- Simson et al. (2021): Elements of future snowpack modeling – Part 2: A modular and extendable Eulerian–Lagrangian numerical scheme for coupled transport, phase changes and settling processes

Arctic snowpack: solution?

PHYSICAL SOLUTION

Implement the water vapor fluxes explicitly in the snowpack (→ snow mass redistribution):

- <u>IVORI</u> project (Marie Dumont, ERC ~2M €)
- Jafari et al., (2020): The Impact of Diffusive Water Vapor Transport on Snow Profiles in Deep and Shallow Snow Covers and on Sea Ice
- Simson et al. (2021): Elements of future snowpack modeling – Part 2: A modular and extendable Eulerian–Lagrangian numerical scheme for coupled transport, phase changes and settling processes

PRACTICAL SOLUTION

Increase the compaction due to the wind + reduce the density of the lower layers, e.g.:

- Royer et al. (2021): Improved Simulation of Arctic Circumpolar Land Area Snow Properties and Soil Temperatures
- Lackner et al., (2022): Snow properties at the forest-tundra ecotone: predominance of water vapor fluxes even in deep, moderately cold snowpacks

Challenge: never applied worldwide and often site specific...

- 1. Implement a multilayer snowpack in CLASSIC (1D simulations)
 - technical challenges: model not so modular and snow is included in many files/routines
 - physical challenges: include Arctic snowpack characteristics (if possible) + blowing snow, etc.
 - → assess these changes at site level simulations (SnowMIP + 3 Arctic sites)

- 1. Implement a multilayer snowpack in CLASSIC (1D simulations)
- Test new snow cover fraction parameterizations + multilayer snowpack in spatial simulations (Arctic) → use of ESA CCI data (snow, land type, etc.) to calibrate and asses these new developments

- 1. Implement a multilayer snowpack in CLASSIC (1D simulations)
- Test new snow cover fraction parameterizations + multilayer snowpack in spatial simulations (Arctic) → use of ESA CCI data (snow, land type, etc.) to calibrate and asses these new developments
- 3. New simulations over the whole Arctic with new snowpack (assessment on the surfaces fluxes) Model development and assessments New Arctic simulations

- 1. Implement a multilayer snowpack in CLASSIC (1D simulations)
 - technical challenges: model not so modular and snow is included in many files/routines
 - physical challenges: include Arctic snowpack characteristics (if possible) + blowing snow, etc.
 - → assess these changes at site level simulations (SnowMIP + 3 Arctic sites)

SnowMIP sites* + Arctic sites

Bylot Island, Canada

Umiujaq TUNDRA + FOREST, Canada

Model and simulation set up

- CLASSIC v1.0 (Melton et al., 2020) including CLASS 3.6.2 (Verseghy et al., 2017) and CTEM 2.0 (Melton & Arora, 2016) + shrubs (Meyer et al., 2021)
- SnowMIP forcing and evaluation data (Menard et al., <u>2021</u>) + Arctic (Domine et al., <u>2021</u>, <u>2024</u>) (linearly interpolated from hourly to 30 minute time step → see <u>issue</u> on GitLab)
- Soil properties: mix of site information + satellite data / PFTs site information (+ peat sometimes)
- Spin up: ~100 to 300 years with spinfast = 10 (cycle over the forcing with CO2 fixed) + last cycle with spinfast = 1 (10-years averaged NEP/NPP and NBP close to 0; cSoil stable)

• 1D simulations:

- *Ref*: latest developing model version
- *EZERO*: same as *Ref* but with a windless exchange coefficient activated in the calculation of the sensible heat fluxes for stable atmospheric conditions over snow (Brown et al., <u>2006</u>)
- CLASS: older model version that was used in the latest SnowMIP experiments (Krinner et al., 2018) using CLASS v3.6 not coupled to CTEM (produced by Paul Bartlett)

Snow depth time series

Main results

- CLASS v3.6 → CLASSIC v1.0 overall slight improvement (albedo, surface/soil temperatures, SCD)
- **EZERO** improves significantly the simulated surface temperature (but slight deterioration for SD/SWE)
- Large snow depth biases at Senator Beck, Swamp Angel, and Umiujac FOREST
 - issues with wind-driven snow redistribution (possible solution, e.g., Lackner et al., $2022 \rightarrow$ correct precipitation rates during high wind-speed events)
 - e.g. Lackner et al. (2022) made 172 measurements of the snow height within a 100 m radius of Umiujaq TUNDRA on 12 April 2018 and observed heights varying between 50 and 210 cm
 - blowing snow sublimation losses? (Gordon et al., 2006)
- Large soil temperature biases at Arctic sites
 - non-consideration of Arctic snowpack characteristics? (e.g., Gouttevin et al., <u>2018</u>; Royer et al., <u>2021</u>)
 - other issues?
- Further investigation needed → snow profiles (density, thermal conduction, temperature, etc.) at several sites (e.g., Col de Porte and Arctic sites) + CO2 at Umiujac (+ add TVC?)

- Planned improvements (1D):
 - multilayer snowpack 3 to 12 layers? (e.g., Boone & Etchevers, <u>2001</u>; Wang et al., <u>2013</u>; Decharme et al., <u>2016</u>)
 - Arctic snowpack adaptations → increasing wind-induced surface snow compaction to simulate the wind slab and reducing the density of lower layers through the vegetation height to approximate the depth hoar formation (e.g., Barrere et al., <u>2017</u>; Gouttevin et al., <u>2018</u>; Royer et al., <u>2021</u>; Lackner et al., <u>2022</u>)
 - blowing snow sublimation losses (Gordon et al., 2006)
- After this first study (spatial):
 - + new snow cover fraction parameterizations (e.g., Roesch et al., <u>2001</u>; Liston, <u>2004</u>; Niu & Yang, <u>2007</u>; Swenson & Lawrence, <u>2012</u>; Lalande et al., <u>2023</u>)

/!\ vertical energy and water fluxes are modeled separately in CLASSIC for four subareas in each grid cell: vegetated, bare soil, vegetated with snow cover, and bare soil with snow cover /!\ 15

- Current CLASSIC v1.0 snow model (Verseghy et al., 2017):
 - **single layer** with fitted quadratic temperature curve (first-order way of accounting for the characteristic sharp near-surface temperature gradient in snow packs)
 - snow albedo / snow density \rightarrow exponential empirical functions (Tabler et al., <u>1990</u>; Brown et al., <u>2006</u>)
 - **fresh snow density** \rightarrow function of the air temperature (Pomeroy & Gray, 1995)
 - snow thermal conductivity (Sturm et al., <u>1997</u>)
 - takes into account melting, infiltration, and refreezing (Bruce & Clark, 1966)
 - interception of snowfall by vegetation is explicitly modeled (depending on the LAI) (Hedstrom & Pomeroy, <u>1998</u>; Bartlett et al., <u>2006</u>; Bartlett & Verseghy, <u>2015</u>).
 - snow cover is assumed to be complete if the diagnosed snow depth is equal to or greater than a threshold value of 0.10 m; if it is less, the snow depth is set to this threshold value, and the fractional snow cover is determined based on the conservation of snow mass.

MICKAËL LALANDE

SOCIAL NETWORKS @LalandeMickael @mickaellalande @mickaellalande mickaellalande.github.io

EMAIL: MICKAEL.LALANDE@UQTR.CA

Bibliography

References

- Bartlett, P. A., MacKay, M. D., & Verseghy, D. L. (2006). Modified snow algorithms in the Canadian land surface scheme : Model runs and sensitivity analysis at three boreal forest stands. Atmosphere-Ocean, 44(3), 207-222. <u>https://doi.org/10.3137/ao.440301</u>
- Bartlett, P. A., & Verseghy, D. L. (2015). Modified treatment of intercepted snow improves the simulated forest albedo in the Canadian Land Surface Scheme. Hydrological Processes, 29(14), 3208-3226. <u>https://doi.org/10.1002/hyp.10431</u>
- Boone, A., & Etchevers, P. (2001). An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model : Local-Scale Evaluation at an Alpine Site. Journal of Hydrometeorology, 2(4), 374-394. <u>https://doi.org/10.1175/1525-7541(2001)002<0374:AIOTSS>2.0.CO;2</u>
- Brown, R., Bartlett, P., MacKay, M., & Verseghy, D. (2006). Evaluation of snow cover in CLASS for SnowMIP. Atmosphere-Ocean, 44(3), 223-238. https://doi.org/10.3137/ao.440302
- Bruce, J. P., & Clark, R. H. (1966). Introduction to Hydrometeorology. Elsevier Science & Technology.
- Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., & Jones, J. (2014). Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627-637. <u>https://doi.org/10.1038/ngeo2234</u>
- Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., & Morin, S. (2016). Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model. The Cryosphere, 10(2), 853-877. <u>https://doi.org/10.5194/tc-10-853-2016</u>
- Domine, F., Belke-Brea, M., Sarrazin, D., Arnaud, L., Barrere, M., & Poirier, M. (2018). Soil moisture, wind speed and depth hoar formation in the Arctic snowpack. Journal of Glaciology, 64(248), 990-1002. <u>https://doi.org/10.1017/jog.2018.89</u>
- Domine, F., Picard, G., Morin, S., Barrere, M., Madore, J.-B., & Langlois, A. (2019). Major Issues in Simulating Some Arctic Snowpack Properties Using Current Detailed Snow Physics Models : Consequences for the Thermal Regime and Water Budget of Permafrost. Journal of Advances in Modeling Earth Systems, 11(1), 34-44. <u>https://doi.org/10.1029/2018MS001445</u>
- Domine, F., Lackner, G., Sarrazin, D., Poirier, M., & Belke-Brea, M. (2021). Meteorological, snow and soil data (2013–2019) from a herb tundra permafrost site at Bylot Island, Canadian high Arctic, for driving and testing snow and land surface models. Earth System Science Data, 13(9), 4331-4348. https://doi.org/10.5194/essd-13-4331-2021
- Domine, F., Sarrazin, D., Nadeau, D. F., Lackner, G., & Belke-Brea, M. (2024). Meteorological, snow and soil data, CO2, water and energy fluxes from a low-Arctic valley of Northern Quebec. Earth System Science Data, 16(3), 1523-1541. <u>https://doi.org/10.5194/essd-16-1523-2024</u>
- Gordon, M., Simon, K., & Taylor, P. A. (2006). On snow depth predictions with the Canadian land surface scheme including a parametrization of blowing snow sublimation. Atmosphere-Ocean, 44(3), 239-255. <u>https://doi.org/10.3137/ao.440303</u>
- Gouttevin, I., Langer, M., Löwe, H., Boike, J., Proksch, M., & Schneebeli, M. (2018). Observation and modelling of snow at a polygonal tundra permafrost site : Spatial variability and thermal implications. The Cryosphere, 12(11), 3693-3717. <u>https://doi.org/10.5194/tc-12-3693-2018</u>

References

- Hedstrom, N. R., & Pomeroy, J. W. (1998). Measurements and modelling of snow interception in the boreal forest. Hydrological Processes, 12(10-11), 1611-1625. <u>https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4</u>
- Jafari, M., Gouttevin, I., Couttet, M., Wever, N., Michel, A., Sharma, V., Rossmann, L., Maass, N., Nicolaus, M., & Lehning, M. (2020). The Impact of Diffusive Water Vapor Transport on Snow Profiles in Deep and Shallow Snow Covers and on Sea Ice. Frontiers in Earth Science, 8. <u>https://www.frontiersin.org/articles/10.3389/feart.2020.00249</u>
- Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., ... Zhu, D. (2018). ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11(12), 5027-5049. <u>https://doi.org/10.5194/gmd-11-5027-2018</u>
- Lackner, G., Domine, F., Nadeau, D. F., Lafaysse, M., & Dumont, M. (2022). Snow properties at the forest-tundra ecotone : Predominance of water vapor fluxes even in deep, moderately cold snowpacks. The Cryosphere, 16(8), 3357-3373. <u>https://doi.org/10.5194/tc-16-3357-2022</u>
- Lalande, M., Ménégoz, M., Krinner, G., Ottlé, C., & Cheruy, F. (2023). Improving climate model skill over High Mountain Asia by adapting snow cover parameterization to complex-topography areas. The Cryosphere, 17(12), 5095-5130. <u>https://doi.org/10.5194/tc-17-5095-2023</u>
- Liston, G. E. (2004). Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models. Journal of Climate, 17(6), 1381-1397. https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2
- Melton, J. R., Arora, V. K., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, E., & Teckentrup, L. (2020). CLASSIC v1.0 : The open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) Part 1 : Model framework and site-level performance. Geoscientific Model Development, 13(6), 2825-2850. <u>https://doi.org/10.5194/gmd-13-2825-2020</u>
- Melton, J. R., & Arora, V. K. (2016). Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geoscientific Model Development, 9(1), 323-361. <u>https://doi.org/10.5194/gmd-9-323-2016</u>
- Menard, C. B., Essery, R., Krinner, G., Arduini, G., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Dai, Y., Decharme, B., Dutra, E., Fang, X., Fierz, C., Gusev, Y., Hagemann, S., Haverd, V., Kim, H., Lafaysse, M., ... Yuan, H. (2021). Scientific and Human Errors in a Snow Model Intercomparison. Bulletin of the American Meteorological Society, 102(1), E61-E79. <u>https://doi.org/10.1175/BAMS-D-19-0329.1</u>
- Meyer, G., Humphreys, E. R., Melton, J. R., Cannon, A. J., & Lafleur, P. M. (2021). Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC). Biogeosciences, 18(11), 3263-3283. https://doi.org/10.5194/bg-18-3263-2021
- Niu, G.-Y., & Yang, Z.-L. (2007). An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. Journal of Geophysical Research, 112(D21), D21101. <u>https://doi.org/10.1029/2007/D008674</u>

References

Pomeroy, J., & Gray, D. (1995). Snowcover : Accumulation, Relocation, and Management. In Bulletin of the International Society of Soil Science (Vol. 7).

Rantanen, M., Karpechko, A. Yu., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 168. <u>https://doi.org/10.1038/s43247-022-00498-3</u>

Roesch, A., Wild, M., Gilgen, H., & Ohmura, A. (2001). A new snow cover fraction parametrization for the ECHAM4 GCM. Climate Dynamics, 17(12), 933-946. https://doi.org/10.1007/s003820100153

- Royer, A., Picard, G., Vargel, C., Langlois, A., Gouttevin, I., & Dumont, M. (2021). Improved Simulation of Arctic Circumpolar Land Area Snow Properties and Soil Temperatures. Frontiers in Earth Science, 9(June), 1-19. <u>https://doi.org/10.3389/feart.2021.685140</u>
- Schuur, E. A. G., Abbott, B. W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V., Lawrence, D., Loranty, M. M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schädel, C., Strauss, J., ... Turetsky, M. (2022). Permafrost and Climate Change : Carbon Cycle Feedbacks From the Warming Arctic. Annual Review of Environment and Resources, 47(1), 343-371.

https://doi.org/10.1146/annurev-environ-012220-011847

Simson, A., Löwe, H., & Kowalski, J. (2021). Elements of future snowpack modeling – Part 2 : A modular and extendable Eulerian–Lagrangian numerical scheme for coupled transport, phase changes and settling processes. The Cryosphere, 15(12), 5423-5445. <u>https://doi.org/10.5194/tc-15-5423-2021</u>
 Sturm, M., Holmgren, J., König, M., & Morris, K. (1997). The thermal conductivity of seasonal snow. Journal of Glaciology, 43(143), 26-41.

https://doi.org/10.3189/S0022143000002781

- Swenson, S. C., & Lawrence, D. M. (2012). A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance. Journal of Geophysical Research: Atmospheres, 117(D21), D21107. <u>https://doi.org/10.1029/2012/D018178</u>
- Tabler, R. D., Benson, C. S., Santana, B. W., & Ganguly, P. (1990). Estimating snow transport from wind speed records : Estimates versus measurements at Prudhoe Bay, Alaska. 58th Annual Western Snow Conference, Sacramento, California. <u>https://westernsnowconference.org/node/620</u>
- Verseghy, D., Brown, R., & Wang, L. (2017). Evaluation of CLASS Snow Simulation over Eastern Canada. Journal of Hydrometeorology, 18(5), 1205-1225. https://doi.org/10.1175/IHM-D-16-0153.1
- Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner, G., Piao, S., & Peng, S. (2013). Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model. Journal of Geophysical Research: Atmospheres, 118(12), 6064-6079. <u>https://doi.org/10.1002/jgrd.50395</u>

Supplementary slide

